博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 3071 Football
阅读量:5116 次
发布时间:2019-06-13

本文共 2683 字,大约阅读时间需要 8 分钟。

Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all ij, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

Sample Input

20.0 0.1 0.2 0.30.9 0.0 0.4 0.50.8 0.6 0.0 0.60.7 0.5 0.4 0.0-1

Sample Output

2

Hint

In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

P(2 wins)  = P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
= p21p34p23 + p21p43p24
= 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

概率dp:

f[i][j]表示j通过第i轮的概率

显然f[i][j]=∑f[i-1][j]*f[i-1][k]*p[j][k]   k为第i轮可遇见对手

可遇见的对手的处理见代码,显然编号从0开始更方便

1 #include
2 #include
3 #include
4 #include
5 #include
6 using namespace std; 7 double f[10][201],p[201][201]; 8 int n; 9 int main()10 {
int i,j,k,ans;11 while (cin>>n&&n!=-1)12 {13 memset(f,0,sizeof(f));14 for (i=0;i<(1<
f[n][ans]) ans=i;32 printf("%d\n",ans+1);33 }34 }

 

转载于:https://www.cnblogs.com/Y-E-T-I/p/8308374.html

你可能感兴趣的文章
算法和数据结构(三)
查看>>
Ubuntu下的eclipse安装subclipse遇到没有javahl的问题...(2天解决了)
查看>>
alter database databasename set single_user with rollback IMMEDIATE 不成功问题
查看>>
Repeater + Resources 列表 [原创][分享]
查看>>
WCF揭秘——使用AJAX+WCF服务进行页面开发
查看>>
【题解】青蛙的约会
查看>>
IO流
查看>>
mybatis调用存储过程,获取返回的游标
查看>>
设计模式之装饰模式(结构型)
查看>>
面向对象的设计原则
查看>>
Swift3.0服务端开发(三) Mustache页面模板与日志记录
查看>>
【转】 FPGA设计的四种常用思想与技巧
查看>>
EntityFrameWork 实现实体类和DBContext分离在不同类库
查看>>
新手算法学习之路----二叉树(在一个二叉查找树中插入一个节点)
查看>>
autopep8
查看>>
GIT在Linux上的安装和使用简介
查看>>
基于C#编程语言的Mysql常用操作
查看>>
s3c2440实验---定时器
查看>>
MyEclipse10安装SVN插件
查看>>
[转]: 视图和表的区别和联系
查看>>